l@l Firia Labs Middle School Python with Robots

MISSION 3: Navigation Challenge
Lesson 4 (Objectives 9-11)

Project Goal: Students will use button presses to control
robot movement and follow an algorithm to move the ‘bot
in a square pattern.

Learning Targets

| can check for a button press.

| can use an if statement for branching.

| can indent code inside a control flow.

| can implement a safety feature in code when the
CodeBot moves.

| can write and follow an algorithm.

| can increase code readability by using comments
and blank lines.

| can make the ‘bot move in a square pattern.

| can understand the control flow of an if
statement.

Time Frame: 40-60 minutes

Key Concepts

The push buttons can be used to control program
flow. One way to do this is by enacting a safety
feature, so code is only run after a button is
pressed. This will keep the ‘bot from moving right
when the program is run.

Branching with if:elif:else statements controls the
flow of the program.

The colon (;) at the end of an if statement
introduces a new block of code. Everything inside
the block should be indented at the same level.
An algorithm is a useful tool for planning a
program. There are many ways to create an
algorithm, such as pseudocode and flowcharts. In
this lesson, only pseudocode is used.

Assessment Opportunities

Mission 3 Lesson 4 Log

Submit completed program NavSquare
Submit completed program Whatlf
Mission 3 Obj. 9-11 Review Kahoot!

Success Criteria

Ooooaoao

Use buttons.was_pressed() in an if statement
Implement a safety feature in code

Plan a program using an algorithm

Write code to drive CodeBot in a specific pattern

Use buttons.was_pressed() in an if/elif/else
statement

Teacher Materials in Learning Portal

Mission 3 Lesson 4 Slides
Mission 3 Lesson 4 Log
Mission 3 Lesson 4 Answer Key

Additional Resources

MoveOut_safety sample code (learning portal)
NavSquare sample code (learning portal)
Whatlf sample code (learning portal)

Mission 3 Obj. 9-11 Review Kahoot!

Vocabulary

Algorithm: A list of instructions, in order, that the computer can follow to complete a task. (A precise sequence of
instructions that the computer can follow exactly, one step at a time, to complete a task or solve a problem)
Comments: Notes in the code about what you are doing; ignored by the computer

Whitespace: Adding blank lines and space around symbols to make the code more readable

Control flow (branching): Decision points in code; code takes a different branch depending on a condition
Condition: A Boolean value (True or False), often the result of a comparison operator like <, >, or ==. Use an if

statement, optionally followed by an elif or else, for branching

Indenting: A way to structure blocks of code by offsetting a block of code four spaces; blocks of code are
indented following a defining statement with a colon ()

New Python Code

buttons.was pressed(0)

Checks to see if BTN-O was pressed; returns True or False

https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-9-11-ms/b908bd13-11d1-4429-8818-bf7b63b4dafe
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-9-11-ms/b908bd13-11d1-4429-8818-bf7b63b4dafe

l@l Firia Labs Middle School Python with Robots

sleep (10) pressed.
leds.user (0)

if buttons.was pressed(0) :
{indented code}

leds.user (0b00011000) Safety feature in code that only executes indented code if Button-O was

turn right

elif buttons.was pressed(l):
turn left

else:
stop

if buttons.was pressed(0) : Example of control flow, or branching, using if/elif/else.

Real World Applications

used in cars, robots, electric toothbrushes, and more!

down the task into an algorithm.

You’ve used some fundamental computer science and robotics principles: controlling motors with specific timing and
sequencing, incorporating safety features, and programming different options, depending on conditions. This code is

Algorithms are part of our lives. We use algorithms all the time, for many of the tasks we complete each day. Have
students think of a daily task, like getting ready for school or making a jump shot in basketball. Then have them break

Teacher Notes:

o This lesson covers objectives 9-11 in Mission 3. You
do not need to use the instructions in CodeSpace.
Some of the concepts are switched around and
introduced in a different order, but all material is
covered, and all goals for each objective will be
met. You should choose to use either the
CodeSpace instructions or the slides, but not both
because even the code used in the slides is a little
different than CodeTrek.

e Algorithms are used throughout this lesson. There
are many unplugged activities for practicing
algorithms, and they can be found in the learning
portal under “CS Unplugged.”

Extensions / Cross-Curricular:
e Suggested unplugged algorithm activities you can
choose from:
Algorithms lesson with drawings
Algorithms lesson with LEGO

PB&J Algorithm
Hide and Seek

e MATH: Have a discussion about the algorithms
used in math, and have students write algorithms
for common math problems.

e Supports language arts through reading
instructions and reflection writing.

Preparing for the lesson:

batteries work fine.

through your LMS.

e All CodeBots will need batteries for this lesson. The ‘bots will be moving around the room. Rechargeable

e CodeBots will need space to move. Dedicate some floor space in your room for students to test their code.

e ook through the slides and workbook. Decide what materials you want to use for presenting the lesson. The
slides can be converted to Google Slides. They can be projected on a large screen. The workbook (if used) can
be printed or remain digital through your LMS and given to students. Choose either the slides/workbook or the
instructions in CodeSpace. Trying to use both could be confusing.

e Be familiar with the mission log assignment and the questions they will answer. Prepare the assignment to give

e ook over the unplugged activities to see if you want to use any of them. If so, when? Will you use an activity to
introduce algorithms, or at the end of the lesson after they have had some practice with algorithms?

https://resources.firialabs.com/teacher-resources/CS%20Unplugged/Algorithms%20Lesson%20with%20Drawings.pptx
https://resources.firialabs.com/teacher-resources/CS%20Unplugged/Algorithms%20Lesson%20with%20LEGOs.pptx
https://resources.firialabs.com/teacher-resources/CS%20Unplugged/Algorithms%20Lesson%20with%20LEGOs.pptx
https://resources.firialabs.com/teacher-resources/CS%20Unplugged/Hide%20_%20Seek.docx.pdf

l@ Firia Labs Middle School Python with Robots

Lesson Tips and Tricks:

¢ Teaching tip:
You can use a variety of discussion strategies to get the most engagement from your students. For example, you
can have students write their answers before asking anyone for an answer. You can use one of many
think-pair-share methods. You can have students write their answer and share with someone, and then have other
students share answers they heard from their peers. You can randomly select students to answer.

77 Pre-Mission Warm-up: -- slide 2

Students can write in their log first and then share, or discuss first and then write in their log.

e Question: How do you move CodeBot forward?
e Question: How do you rotate CodeBot clockwise?
e The questions can help students focus on the programming process and review the previous lesson.

= Mission 3 Lesson 4 Activities:

Each student will complete a Mission Log. Students could work in pairs through the lesson, or they can work
individually.

Students should have access to their Mission 3 Lesson 3 Log, with the robot labs. They can use their data to help
them navigate CodeBot in a square.

¢ Teaching tip: Push Button Controls -- slides 3-5
This information is added to Objective 9. It isn’t in CodeSpace until Objective 10, but | felt this was a good time to
introduce it. Students learn about checking if a button is pressed, and using this code to delay CodeBot movement
until they are ready. The “safety feature” discussed here is new information but will be used in future lessons and
programs so students have time to run their code and then move to a testing station on the floor without the
CodeBot just taking off. They will be doing a lot of code testing for Obj. 9, so the safety feature can really save them
some time and aggravation.

¢ Teaching tip: Push Button Controls -- slides 6-7
Help students determine a good countdown time. If they are far away from a testing station on the floor, they need
more time. If they are close, they need less time. We don’t want students running into each other trying to make
their countdown time. The suggestion on the slides is 30 seconds. That should be plenty of time. You can reduce
the amount of sleep() for your students’ environment.

¢ Teaching tip: Code with Push Buttons -- slides 8-9
Students use the program from the last lesson (MoveOut) to try the safety feature code. They will need to indent
their current code inside the if statement. A quick way to do this is to highlight the code and press <TAB>. That will
indent all the highlighted code at the same time. You can model this for your students.

¢ Teaching tip: Objective 9-- slides 10-13
This is the beginning of the actual objective 9. The objective starts with discussing an algorithm. You may want to
do an additional unplugged algorithm activity. Several suggestions are listed above.

¢ Teaching tip: Objective 9 Activity -- slide 14
Students write an algorithm in their mission log. An algorithm is given in CodeSpace, and you can show it to the
students, or have them come up with their own.

¢ Teaching tip: Objective 9-- slides 15-17
These slides go over the goal for this objective — have CodeBot move in a square. It doesn’t matter the length of
the side or the direction of the rotations. Some concepts from earlier are introduced here: comments and white
space by using blank lines. Students are also given the suggestion to “divide and conquer” by doing just one step
at a time.

l@ Firia Labs Middle School Python with Robots

¢ Teaching tip: Objective 9 Activity -- slides 18-22
Students should work on one side and rotation of a square. Once they get that, they can copy and paste the code
three more times to have a square. The slides break down this process, with sample code on slides 20 & 21.

Students will use the safety feature in this program.

¢ Teaching tip: Objective 10 -- slides 23-24
This objective introduces button presses, which were discussed earlier in the slides. Now students see the
possibility of using both buttons and not just one. The terms “control flow” and “branching” are introduced.

¢ Teaching tip: Objective 10 Activity -- slides 25-29
This activity uses a simple program that students will step through using the debugger. The code for the program is
given on slide 25.

Students will “Step In” this program using the debugger three separate times. The first time pressing BTN-0, the
second time pressing BTN-1, and the third time not pressing any button. The goal is for them to see the control flow
of the if statement. Once a condition is true, the indented code is executed and the rest of the code is skipped.
They will record their observations in their mission logs. The slides walk them through the debugging and stepping
in process.

The last slide summarizes the control flow of the if / elif / else statement.

¢ Teaching tip: Objective 11 -- slides 30-31
This objective applies what students have been learning about control flow and button presses. They can continue
to use the Whatlf program, and add code to meet the goals. In CodeSpace, it asks students to use the NavSquare
program and add to it. You can do that, but the slides will tell students to keep with their most recent program,
which is Whatlf.

Slide 31 shows a possible algorithm for their completed program. They really can do anything for the second button
press, but the example on the slide is to use one of their earlier Mission 3 programs, like SequencelLEDs or
BinaryLEDs. That way the code is already done and they are focusing on the control structure and not a specific
task for moving CodeBot. They will write their algorithm in their mission log.

¢ Teaching tip: Objective 11 Activity -- slides 32-35
The first instruction for modifying the code is to add four lines to the safety feature. The code they have is fine, but
in order to meet the goal in Obj. 11, they need to have similar code to this. If you unlock the mission so they don’t
have to meet the goals, you can skip this part.

The next two steps for the activity are to open previous programs and copy and paste code into the Whatlf
program. The code for the square should already be indented, so no problem there. The code for the second
branch, from a previous program, will not already be indented. All lines inside the elif branch need to be indented.
Remember: the shortcut for this is to highlight the code and press <TAB>.

Optional: ./~ Mission 3 Obj 9-11 Kahoot! Review.

A review Kahoot! Is available for this lesson. You can do the Kahoot together as a class, or assign it independently.
It includes two review questions that are frequently missed from an earlier Kahoot!

i Post-Mission Reflection:

The post-mission reflection asks students to summarize the control flow of an if/elif/else statement. This was done
on slide 29, if students need a refresher.

You can use an extension or cross-curricular activity as post-mission activity.

You can use the Mission 3 Obj. 9-11 Kahoot as a lesson review. (link above)

l@l Firia Labs Middle School Python with Robots

End by collecting the Mission 3 Lesson 4 Log.

SUCCESS CRITERIA:

Use buttons.was_pressed() in an if statement
Implement a safety feature in code

Plan a program using an algorithm

Write code to drive CodeBot in a specific pattern

Use buttons.was_pressed() in an if/elif/else statement

oo oo

